Chapters 22/23: Potential/Capacitance
Tuesday September 20t

Mini Exam 2 on Thursday:
Covers Chs. 21 and 22 (Gauss' law and potential)
Covers LONCAPA #3 to #6 (due this Wed.)
No formula sheet allowed!!

‘Review: Electrostatic potential energy
‘Review and continuation: Electrostatic potential
‘Relationship between V and E
-Capacitance
*Definition
‘Examples
-Equipotential surfaces
-Conductors
‘Relationship between £ and V

Reading: up to page 386 in the text book (Chs. 22/23)



Electrostatic Potential Energy

« The electrostatic (Coulomb) force is conservative.

o It is this property that allows us to define a scalar
potential energy (one cannot do this for non
conservative forces).
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« One can then apply energy conservation (PHY2048).



Electrostatic Potential Energy

« The potential energy is a property of both of the
charges, not one or the other-.

« If we choose a reference such that U = 0 when the
charges are infinitely far apart, then we can simplify
the expression for the potential energy as follows.
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Again, the sign of U is not a problem. It is
taken care of by the signs of the charges ¢,
and g,.



The Electrostatic Potential

« We define a new quantity known as the Electrostatic
Potential V, simply by dividing out the test charge q,:
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« This ‘scalar potential’ depends only on the details of
the source charge distribution (in this case, q).
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« The absolute value of the potential is not important. As
we shall see, it is only potential differences that really
matter.



Calculating Potential Difference from E

Two parallel conducting plates

Cannot really use:

V(r) =k

r

Can always use definition:
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As usual, exploit the symmetry:

AV =—| E_ d




Calculating Potential Difference from E

Two parallel conducting plates

Cannot really use:

V(r) =k

r

Area A Can always use definition:
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Capacitors

‘Used to store energy in electromagnetic fields [in contrast
to batteries (chemical cells) that store chemical energy].

-Capacitors can release electromagnetic energy much, much
faster than chemical cells. They are thus very useful for

applications requiring very rapid responses.
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Capacitors

*The transfer of charge from one terminal of the capacitor
to the other creates the electric field.

*Where there is a field, there must be a potential
difference, i.e., a voltage difference between terminals.

*This leads to the definition of capacitance C:
O=CAV|

*Q represents the magnitude of the excess charge on
either plate. Another way of thinking of it is the charge
that was transferred between the plates.

SI unit of capacitance: 1 farad (F) = 1 coulomb/volt
(after Michael Faraday)

Capacitances more often have units of picofarad (pF) and microfarad (UF)



Capacitors

*The transfer of charge from one terminal of the capacitor
to the other creates the electric field.

*Where there is a field, there must be a potential
difference, i.e., a voltage difference between terminals.

*This leads to the definition of capacitance C:

O=CAV|

Conducting plates with
area A are a small
distance d apart.
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Field inside is
essentially uniform.
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is negligible.




Our Example Involving Parallel Plates

S Two parallel conducting plates

AV =—E Ax=—"-d
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Our Example Involving Parallel Plates

v

Two parallel conducting plates

AV =—E Av=—"-
E
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When defining capacitance, we do

Area A - | :
L0 not worry about sign of potential,
o 1.e., capacitance 1s always positive
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Another Example: Concentric Spheres

T

Can use both
V(r)=k—

and



Some sophisticated vector calculus

The fundamental theorem of calculus:

I(ﬂjdwf(xz)—f(xl)

dx
Recall the 1D example involving the parallel plates:
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Potential Does Not Kill You




Some more sophisticated vector calculus

The fundamental theorem of calculus:

In 3D:

1

AV = TVV-dF: v (%)-V(F)
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Equipotential lines/surfaces

Steep hill,
close contours,
strong field

A are perpendicular.

Steep hill,
close contours,

strong field AV




Equipotential surfaces

W. . =—qAV = —quE-d? = —q(Vb —Va)

field —

« E-field lines perpendicular to equipotential surfaces
« Field does positive work when q accelerated by field



Equipotential surfaces
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Here are some example surfaces including field lines
(point charge, infinite charged plane and a dipole).

e By spacing the equipotential surfaces by the same
potential difference (AV), one can get a feel for the
electric field strength (E = -dV/dr), i.e. the closer the
spacing, the stronger the field.



